Efficacy of inactivated swine influenza virus vaccines against the 2009 A/H1N1 influenza virus in pigs.

نویسندگان

  • Amy L Vincent
  • Janice R Ciacci-Zanella
  • Alessio Lorusso
  • Philip C Gauger
  • Eraldo L Zanella
  • Marcus E Kehrli
  • Bruce H Janke
  • Kelly M Lager
چکیده

The gene constellation of the 2009 pandemic A/H1N1 virus is a unique combination from swine influenza A viruses (SIV) of North American and Eurasian lineages, but prior to April 2009 had never before been identified in swine or other species. Although its hemagglutinin gene is related to North American H1 SIV, it is unknown if vaccines currently used in U.S. swine would cross-protect against infection with the pandemic A/H1N1. The objective of this study was to evaluate the efficacy of inactivated vaccines prepared with North American swine influenza viruses as well as an experimental homologous A/H1N1 vaccine to prevent infection and disease from 2009 pandemic A/H1N1. All vaccines tested provided partial protection ranging from reduction of pneumonia lesions to significant reduction in virus replication in the lung and nose. The multivalent vaccines demonstrated partial protection; however, none was able to prevent all nasal shedding or clinical disease. An experimental homologous 2009 A/H1N1 monovalent vaccine provided optimal protection with no virus detected from nose or lung at any time point in addition to amelioration of clinical disease. Based on cross-protection demonstrated with the vaccines evaluated in this study, the U.S. swine herd likely has significant immunity to the 2009 A/H1N1 from prior vaccination or natural exposure. However, consideration should be given for development of monovalent homologous vaccines to best protect the swine population thus limiting shedding and the potential transmission of 2009 A/H1N1 from pigs to people.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Failure of protection and enhanced pneumonia with a US H1N2 swine influenza virus in pigs vaccinated with an inactivated classical swine H1N1 vaccine.

Two US swine influenza virus (SIV) isolates, A/Swine/Iowa/15/1930 H1N1 (IA30) and A/Swine/Minnesota/00194/2003 H1N2 (MN03), were evaluated in an in vivo vaccination and challenge model. Inactivated vaccines were prepared from each isolate and used to immunize conventional pigs, followed by challenge with homologous or heterologous virus. Both inactivated vaccines provided complete protection ag...

متن کامل

Swine influenza virus vaccine serologic cross‐reactivity to contemporary US swine H3N2 and efficacy in pigs infected with an H3N2 similar to 2011–2012 H3N2v

BACKGROUND Swine influenza A virus (IAV) reassortment with 2009 H1N1 pandemic (H1N1pdm09) virus has been documented, and new genotypes and subclusters of H3N2 have since expanded in the US swine population. An H3N2 variant (H3N2v) virus with the H1N1pdm09 matrix gene and the remaining genes of swine triple reassortant H3N2 caused outbreaks at agricultural fairs in 2011-2012. METHODS To assess...

متن کامل

Immunization of pigs with a particle-mediated DNA vaccine to influenza A virus protects against challenge with homologous virus.

Particle-mediated delivery of a DNA expression vector encoding the hemagglutinin (HA) of an H1N1 influenza virus (A/Swine/Indiana/1726/88) to porcine epidermis elicits a humoral immune response and accelerates the clearance of virus in pigs following a homotypic challenge. Mucosal administration of the HA expression plasmid elicits an immune response that is qualitatively different than that el...

متن کامل

A novel M2e-multiple antigenic peptide providing heterologous protection in mice

Swine influenza viruses (SwIVs) cause considerable morbidity and mortality in domestic pigs, resulting in a significant economic burden. Moreover, pigs have been considered to be a possible mixing vessel in which novel strains loom. Here, we developed and evaluated a novel M2e-multiple antigenic peptide (M2e-MAP) as a supplemental antigen for inactivated H3N2 vaccine to provide cross-protection...

متن کامل

The effect of the hexanic extracts of fig (Ficus carica) and olive (Olea europaea) fruit and nanoparticles of selenium on the immunogenicity of the inactivated avian influenza virus subtype H9N2

Influenza is a contagious viral disease that is seen in avian, human and other mammals, so its control is important. Vaccination against influenza virus subtype H9N2 is one of the ways in controlling program, for this reason several vaccines has been produced. Recently, application of inactivated oil-emulsion vaccines in poultry for controlling low pathogenic avian influenza is increasing. At p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Vaccine

دوره 28 15  شماره 

صفحات  -

تاریخ انتشار 2010